

Microbial metabolism Part 1.

General Microbiology - Lecture 6 Cañada College - Fall 2006

Instructor: Tamas Torok, Ph.D.

Topics for the day

- Metabolism in general
- Enzymes
- Energy production/catabolism
 - substrate-level phosphorylation
 - glycolysis and alternatives
 - fermentation

Metabolism

- Metabolism
 - sum total of all reactions that occur in a cell
- Catabolic reactions
 - break down of complex molecules into smaller, simpler molecules with the release of energy and reducing power (electrons)
- Anabolic reactions
 - synthesis of complex molecules from simpler ones
 - requires energy and reducing power (electrons) to form cell structures
- Catabolic and anabolic reactions
 - coupled, highly regulated, interdependent, and <u>simultaneous</u>

Basic energy concept

- Cells
 - open, non-equilibrium systems
- First law of thermodynamics
 - energy can neither be created nor destroyed in the universe
- Second law of thermodynamics
 - in any reaction the amount of molecular disorder always increases

Energy production

- Redox reaction
 - oxidation: loss of electrons
 - reduction: gain of electrons
 - reduction potential (E₀)
 - half reactions
 - $H_2 \rightarrow 2H^+ + 2e^-(E_0' = -0.42V)$
 - $1/2 O_2 + 4 e^- \rightarrow H_2 O (E_0' = +0.82V)$
 - $\Delta G^{0}' = (-nF)(\Delta E_{0}') = (-2)(-96.48 \text{kJ/V})(+0.82 \text{V} 0.42 \text{V}) = 239.27 \text{ kJ}$
 - each molecule has the potential to donate and accept electrons from another molecule

Table 8.1

Half reactions, the number of electrons transferred (n), and the electrode potential under standard conditions $(E_o^{'})$ compared to the hydrogen half cell

Half Reaction	n	E _o '(V)
Ferredoxin (oxidized/reduced)	2	-0.43
2 H+/H ₂	2	-0.42
NADP+ + H+/NADPH + H+	2	-0.32
1,3-di-P-glycerate + 2H+/		
glyceraldehyde-3-P + Pi	2	-0.29
Chlorophyll (P _{II})	1	-0.20
FMN + 2H+/FMNH ₂	2	-0.22
FAD + 2 H ⁺ /FADH ₂	2	-0.22
Standard half cell 2 H+/H2	2	0.00
Methylene blue (oxidized/reduced)	2	+0.01
Fumarate + 2H+/succinate	2	+0.03
Ubiquinone (oxidized/reduced)	2	+0.06
Cytochrome b (Fe ³⁺ /Fe ²⁺)	1	+0.08
Cytochrome c (Fe ³⁺ /Fe ²⁺)	1	+0.25
Chlorophyll (P _i)	1	+0.40
$NO_3^- + 2 H^+/NO_2^- + H_2O$	2	+0.42
Fe ³⁺ /Fe ²⁺	1	+0.77
$2 H^+ + \frac{1}{2} O_2 / H_2 O$	2	+0.82

Enzymes

- What is an enzyme?
- Functional enzyme
- Mechanism of enzymatic reaction
 - "generic" version
 - one enzyme many substrates
 - many enzymes one substrate
 - classes of enzymes
- Regulation of enzymes
 - via synthesis (topic for a later evening)
 - via activity

8

Factors influencing enzyme activity

- Temperature
- pH
- Pressure
- Substrate concentration
- Post-translational regulation
 - inhibitors
 - competitive inhibition
 - allosteric inhibition
 - feedback inhibition

Catabolism

- Goal
 - generate energy carriers (ATP, GTP) and electron carriers (NAD and FAD)
- Energy and reducing power fuel growth, repair, cell maintenance, and movement

ATP (adenosine triphosphate)

NAD/NADH

Berkeley Lab

Energy production

- ATP generation
 - substrate-level phosphorylation (SLP)
 - oxidative phosphorylation (ETLP)
 - photo-phosphorylation

Substrate-level phosphorylation

SLP

 synthesis of ATP directly coupled to the breakdown of high energy organic substrates

Glycolysis

(Embden-Meyerhoff-Parnas pathway)

- Most commonly used series of reactions for oxidizing glucose to pyruvate
- Glycolysis can occur in the presence or absence of oxygen
- Net gain of 2 ATP and 2 NADH (reduced electron carrier) molecules

Glycolysis (cont.)

Activation of glucose

Glycolysis (cont.)

Hexose splitting

Glycolysis (cont.)

Energy extraction

Coupling glycolysis to respiration

Alternatives to glycolysis

- Pentose phosphate pathway
- Entner-Dudoroff pathway

Pentose phosphate pathway

- Uses the 6 carbons of glucose to generate 5 carbon sugars and reducing equivalents (oxidative and nonoxidative branches)
- Under certain conditions it can completely oxidize glucose to CO₂ and water
- Operates exclusively in the cytosol
- Primary functions
 - generates reducing equivalents, NADPH, for reductive biosynthesis
 - provides the cell with ribose-5-phosphate (R5P) for the synthesis
 of the nucleotides and nucleic acids
 - metabolizes pentose sugars derived from the digestion of nucleic acids
 - rearranges the carbon skeletons of carbohydrates into glycolytic/gluconeogenic intermediates

Entner-Dudoroff pathway

- Only a few bacteria, e.g. *Zymomonas*, employ the Entner-Doudoroff pathway as a *fermentation* path
- Many bacteria, especially pseudomonads, use the pathway to degrade carbohydrates for <u>respiratory</u> metabolism
- Entner-Dudoroff pathway yields 2 pyruvic acid from glucose (same as glycolysis)
- Oxidation occurs before the cleavage, and the net energy yield per mole of glucose used is one mole of ATP

Fermentations

- Alternative to respiration
- Goal
 - NADHs need to be oxidized, "recycled"
 - pyruvate converted
- Examples
 - lactic acid fermentation
 - alcohol fermentation
 - heterofermentative microbes